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SUMMARY 
This paper describes a numerical study of laminar flow through building cracks such as those found around 
doors or windows. The mathematical model is based on the solution of the two-dimensional conservation 
equations of mass and momentum by a finite volume method. The results are presented for two crack 
geometries, namely double-bend and four-bend cracks. The variation in local pressure coefficient along the 
crack walls and the velocity and pressure distributions within the cracks are described. The overall predicted 
pressure coefficient for the double-bend crack is compared with the results obtained using a correlation 
given by Baker et aL5 
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1 .  INTRODUCTION 

Building ventilation plays an essential role in the control of the internal environment. Ventilation 
may be achieved through openings, such as windows, specified during the design stage of the 
building. It may also result by infiltration through imperfections which include, for example, 
cracks around doors and windows. The inclusion of the latter type of ventilation is also important 
in the design of ventilation systems. 

The air leakage through building cracks depends on the pressure drop across the crack and the 
crack geometry. The relationship between the flow rate and pressure drop can be determined by 
carefully designed experiments.'. ' A limited number of studies of modelled cracks have been 
reported w 'ch are described below. With the development of computer-modelling techniques, 
these expe Jk ental tests can be simulated with considerably less cost. The present study describes 
an example of such an approach. It should be noted that although the specific application 
identified here is building ventilation, flows of this type may be relevant to other types of internal 
fluid flows, such as those in mitre bends, channels with corrugated walls and seals. 

An experimental study of flow through cracks has been reported by Hopkins and Han~fo rd .~  
They considered three crack geometries, namely straight-through, L-shaped and two-bend 
cracks. They presented their results in the following form, relating the discharge coefficient to the 
Reynolds number: 

1 c . z  

where the Reynolds number is based on the hydraulic diameter Dh, c, is a constant, z is the crack 
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length (measured along the centreline; see Figure 1) and c2 is a loss coefficient associated with the 
losses at entry, at exit and in bends. For a double-bend crack, Hopkins and Hansford gave values 
of about 53 and 3.1 for the coefficients c1 and c2 respectively. The parameter cd in equation (1) is 
defined as 

where Vis the volume flow rate, A is the crack area and Apt is the overall pressure drop. The term 
discharge coefficient was first used by Hopkins and Hansford and has the following relationship 
with a more common term, the pressure coefficient: 

2 cp, = 1/c*. (3) 
Etheridge4 re-examined the experimental data of Hopkins and Hansford and suggested new 

correlations in the same form as equation (1). 
More recently, Baker et d5 reported a detailed experimental study of air flow through cracks 

of the same basic geometries as those adopted by Hopkins and Hansford. They extended the 
previous work by considering a wide range of crack heights and lengths and Reynolds numbers. 
They examined the equations given by Etheridge. Their results showed good agreement with the 
results of Etheridge as far as the value of c2 in equation (1) was concerned. However, they 
obtained somewhat different values for the coefficient cl. For example, for the double-bend crack 
the value of c1 was found to be 78.9 compared with 43.2 given by Etheridge, while the values of c1 
were given as 3.3 and 3.4 respectively. The significant difference between the values of c2 points to 
the underestimation of the measured pressure drop across the crack by Hopkins and Han~ford.~ 
This point will be raised again in Section 6. 

This paper describes the results of a numerical study by a finite volume method. For the low 
flow rates considered here the flow is treated as  laminar. Therefore the mathematical model 
comprises the momentum and continuity equations. Complications associated with the model- 
ling of turbulence, which may occur at higher flow rates, are excluded from the present study. 

The contribution of this paper is in the application of computational fluid dynamics to the 
problem. Also, extension of the work to four-bend cracks (a geometry which has not been 
considered by the previous authors) provides further insight in the understanding of this type of 
flow. 

2. THE MATHEMATICAL MODEL 

It is assumed that the fluid flow through the modelled crack is laminar and two-dimensional. For 
low flow rates the former assumption is a valid one. The latter assumption is also reasonable since 
the crack height is relatively small compared with the crack width. Additionally, it is assumed that 
the flow is steady and incompressible. Thus the governing differential equations describing the 
conservation of mass and momentum are 

aU av 
ax  ay 
-+-=0, 
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These equations may be solved simultaneously by numerical means. The approach adopted here 
is an iterative one based on a finite volume method. The discretization of the governing equations 
into algebraic equations is based on the staggered grid system and hybrid differencing scheme. 
The solution of the discretized equations incorporates the SIMPLE (semi-implicit method for 
pressure-linked equations) algorithm6 for the derivation of pressure, the line-by-line method and 
tridiagonal matrix algorithm, the under-relaxation procedure and the convergence criterion as 
described by Ide~ iah .~  Additionally, the reader may refer to Reference 8 for further details of the 
method. The boundary conditions are described in Section 4. 

3. CRACK GEOMETRIES 

The modelled cracks are the so-called double-bend and four-bend cracks as shown in Figure 1. 
The geometry of the former is the same as the one defined by Hopkins and Han~ford,~ except for 
the downstream lengths C, D, and El F, which are extended for computational purposes (see 
Section 4). The four-bend crack has been considered here to demonstrate a possible extension of 
the work to a more complex geometry which may occur in practice. However, experimental data 
are only available for the double-bend crack. 
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Figure 1. Crack geometncs: (a) double-bend crack; (b) four-bend crack (dimensions are in millimetres) 
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4. COMPUTATIONAL DETAILS 

The Cartesian co-ordinate system (x -y )  is shown in Figure 1. It was applied without change over 
the entire flow field. 

The results are presented for grid sizes 34 x 34 and 58 x 34 for double-bend and four-bend 
cracks respectively. The distribution of grid lines may be realized with reference to the vector 
plots of the velocity fields shown in Figures 2 and 3. Two other grid sizes, namely 70 x 42 and 
46 x 26 for the four-bend and 38 x 42 and 30 x 26 for the two-bend crack, were also considered. 
The coarser grid sizes did not provide accurate representations of the flow fields, since the 
recirculation zones at the corners were not predicted or their sizes were underestimated. The 
finest grids, on the other hand, did not result in significantly different results from those 
obtained using 34 x 34 and 58 x 34 grids. 

The hydraulic diameter is defined as 

Dh = 4A/P, (7) 
where A and P are the cross-sectional area and the wetted perimeter respectively. When the crack 
height is much smaller than its width, equation (7) reduces to 

D h  = 2h. (8) 

a 

b 

Figure 2. Vector plots of the velocity field in a double-bend crack (a) Re, =2ooo; (b) Re, = 50 
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Figure 3. Vector plots of the velocity field in a four-bend crack (a) Re,, = 2000; (b) Re, = 50 

The Reynolds number is defined as 

where LI is the average velocity. This definition, based on D, rather than h, was chosen so that the 
results are directly comparable with those of Baker et aL5 

The local pressure p is computed relative to the pressure at the crack inlet. 
The local pressure drop Ap, is defined as the difference between the local pressure and the 

pressure at the inlet and therefore has the same numerical value as the local pressure. The overall 
pressure drop Ap,, is measured at a location downstream of the last bend, indicated by P in 
Figure 1. The location of P was chosen so that the overall crack length z was the same as the 
one adopted by Hopkins and Hansford.' 

The local pressure coefficient is defined as 

The overall pressure coefficient is defined similarly but with Apt in the numerator. 
The boundary conditions were defined as follows. 
At the crack inlet a uniform velocity was assumed. The Reynolds number was in the range 

50-2000, which corresponds to an average velocity in the range 0076-3.0 ms-'. The air 
properties were calculated at 20 "C. 
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At the outlet the flow was assumed to be parallel (in the main flow direction) and the u- 
component of velocity was set to zero. The value of the u-component was adjusted so that the 
total inflow and the total outflow mass flow rates remained the same. In order to satisfy this 
boundary condition at the outlet, the length of the crack downstream of the last bend was 
extended (see Figure 1). However, the calculation of the overall pressure drop was based on the 
value of the pressure at a location well before the outlet, as was mentioned in Section 3. 

At the walls the non-slip condition was applied and the wall shear force on the flow was 
introduced via the source terms in the discretized momentum equations. The areas shown by 
the broken lines in Figure 1 were treated as solid regions. 

The computer program used in this study has been applied to and tested on numerous 
problems (see e.g. References 9 and 10). 

5. RESULTS 

Two examples of the velocity field for the double-bend and four-bend cracks (for Re, = 2000 and 
50) are shown in Figures 2 and 3. Contour plots of the pressure field for the four-bend crack are 
shown in Figure 4. The variation in local pressure coefficient along the upper and lower walls is 
shown in Figures 5 and 6. Finally, a comparison between the predicted results and the 

a 
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Figure 4. Contour plots of the pressure in a four-bend crack (a) Re, = 2000, (b) Re, = 50 
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Figure 7. Variation in overall pressure coefficient: A,  double-bend crack; 0, four-bend crack; ----, laminar flow 

between two parallel plates (see equation (12)) 
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experimental data for the double-bend crack is shown in Figure 7. This figure also shows the 
results for the four-bend crack. The results for a fully developed laminar flow between two parallel 
plates are also included for comparison. 

6. DISCUSSION 

The velocity field for the four-bend crack and Reh = 2000 (see Figure 3(a)) shows flow separation 
at the sharp corners (B2,C,,D1 and E, in Figure 1) on the inner wall and subsequent 
reattachment and thus formation of recirculation zones. These recirculation zones are absent for 
Re, = 50 (see Figure 3(b)). However, results not shown here indicated that recirculation zones 
were present for Reynolds numbers as low as 100 and that their sizes decreased with decreasing 
Reynolds number. There are also recirculation zones at the comers (B,, C,, D, and El) on the 
outer walls. The sizes of these regions, however, remained nearly independent of the Reynolds 
number. The flow field for a Reynolds number of 50 shows a tendency to establish a parabolic 
velocity profile within each leg of the bend. 

Comparing the velocity fields for the double-bend and four-bend cracks (Figures 2 and 3) 
indicates that the flow patterns are virtually the same within the first two legs (AB and BC) of the 
bends and that the downstream bends have no or little effect on the upstream flow. This was also 
confirmed by comparing the contour plots of the pressure fields shown in Figure 4 with those for 
the double-bend crack (not shown here). These figures indicate a large variation in pressure 
around the corners. The pressure is, however, nearly constant across the crack in the middle 
region of each leg away from the corners. 

The variation in local pressure coefficient along the walls (see Figures 5 and 6) demonstrates the 
familiar behaviour observed in bends," - i.e. the adverse and then favourable pressure 
gradients on the outer wall and vice versa on the inner wall of each bend. An interesting feature of 
these multi-bends is that as the flow direction is followed, the inner wall (or outer wall) of one 
bend will become the outer wall (or inner wall) of the following bend. This is reflected in the type 
of pressure variation seen here, which is specific to this type of bend. Along a significant part of 
the crack length, between C, and D,, the pressure on both walls remains the same. This 
behaviour is absent between, say, B, and C,. It is interesting to note the alternate formations of 
wide and narrow regions of pressure variation indicated by the shaded areas in Figure 6. The 
reason for this behaviour can be realized with reference to Figures 2 and 5. The flow, in going 
from B, towards C, (the inner wall of the first bend followed by the outer wall of the second bend), 
experiences an adverse pressure gradient in the neighbourhood of the second bend. The opposite 
is the case for the flow along B, C, , where it experiences mostly a favourable pressure gradient 
along its path. This phenomenon is also manifested in the formation of different (in size and 
extent) recirculation zones on B,C2 (and D,E,) compared with C,D, (and E,F,). 

Figure 7 shows the effect of the Reynolds number on the overall pressure coefficient. As the 
Reynolds number increases, the pressure coefficient decreases. For the same Reynolds number the 
four-bend crack shows, as expected, a higher pressure coefficient than the two-bend crack. 
However, it should be noted that since the length z is different for the two-bend crack than the 
four-bend crack, a particular value of z/Re,D, corresponds to different Reynolds numbers for the 
two different types of cracks. 

On the basis of their experimental work, Baker et ul.' suggested the following correlation for a 
double-bend crack: 

cP, = 78.9 -.L- +c,. 
Dh 
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The present numerical calculations are of approximately the same mathematical form as equation 
(1 1). However, the curvature of the lines representing both the double-bend and four-bend 
configurations indicates that the coefficient c2 is a (weak) function of the Reynolds number. This is 
not entirely surprising, since it is equivalent to stating that the pressure losses associated with the 
bends are (weak) functions of the Reynolds number. 

The value of c2 specified by Baker et aL5 was 3.3. However, this value includes effects associated 
with flow contraction into and expansion from the cracks. A consistent basis of comparison of the 
experimental work of Baker et al. with the present numerical work can be obtained by adjusting 
their value for c2 by subtracting an appropriate amount for the combined effects of entry and exit 
losses. Baker et al. estimated that these two components made a contribution of 1.5 to their value 
of c2. Hence for comparison with the present work the appropriate value of c2 is 3-3 - 1.5 = 1.8. 

With this value of c2 the predicted results are about 12% higher than those obtained from 
equation (1  1). However, the disagreement is not as severe as it might appear. The experimental 
data of Baker et aL5 show about the same percentage deviation from the mean value. In their 
error analysis they estimated errors of about 2% in the value of z/Re,D, and 3% in cp, for 6 mm 
cracks. For thinner cracks they estimated higher values. However, their analysis was based on 
errors associated with the crack height and no analysis of the errors associated with the pressure 
and volume flow measurements were presented. 

Comparison with the results obtained using the theory of laminar flow between two parallel 
plates may be useful in this respect. This theory (for a fully developed velocity profile) yields 

Z 
~,,,=96-. 

Dh 

This relationship is also shown in Figure 7. As expected, the pressure coefficient evaluated using 
equation (12) is lower than the values obtained experimentally for cracks (for the obvious reason 
that the presence of bends causes additional losses), but only up to a value of about z/D,Re,=Ol.  
For larger values the experimental correlation actually shows lower pressure drops. High values 
of Z/D,,Reh correspond to low values of Re, and hence low flow rates and differential pressures. 
For example, a Reynolds number of about 50 corresponds to an average velocity of about 
0-076 m s - l  and a flow rate (per unit width) of about 37.5 x m2 s-'. It is particularly difficult 
to obtain accurate measurements under these demanding conditions, and experimental results 
frequently show greater error under such circumstances. Since there is no significant reduction in 
the present computational accuracy at high values of z/DhReh, it must be inferred that the noted 
discrepancy is attributable to experimental errors. Comparing the present numerical results with 
those based on equation (12), however, shows that higher pressure drops are predicted over the 
entire range of z/Re,D, shown in Figure 7. 

It may also be useful to refer to the correlation by Etheridge4 at this stage. On the basis of 
results of Hopkins and Han~ford,~ a value of 43.2 was suggested for c1 compared with 78.9 as 
suggested by Baker et aL5 This obviously results in significant underestimation of the pressure 
coefficient, much lower than what equation (1 1) yields. 

7. CONCLUSIONS 

A numerical study of laminar fluid flow through building cracks was presented. The results 
showed details of the flow field, such as regions of flow separation and local pressure distribu- 
tions. These details are very difficult to obtain by experimental means. 

The predicted overall pressure coefficient for a double-bend crack was higher than that 
obtained using the correlation by Baker et uL5 It is argued that the discrepancy is explained by the 
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experimental correlation underestimating the pressure coefficient, especially at very low flow 
rates. 

The results show that computational fluid dynamics can be used as an effective tool in 
increasing understanding of complex flows and in obtaining data on gross parameters (the overall 
pressure drop in this case), especially in areas where accurate measurements are difficult to obtain, 

APPENDIX: NOMENCLATURE 

area 
constants in equation (1) 
discharge coefficient 
local pressure coefficient (see equation (10)) 
overall pressure coefficient 
hydraulic diameter (see equation (8)) 
crack height 
pressure 
perimeter 
Reynolds number based on the hydraulic diameter 
components of velocity in x- and y-direction respectively 
average velocity 
volume flow rate 
Cartesian co-ordinate system 
crack length 
overall pressure drop 
local pressure drop 
density 
kinematic viscosity 
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